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EXTENDED SEGMENT ANALYSIS

Rumen Angelov and Svetoslav Markov

University of Sofia

Abstract.

This paper can be considered as a continuation of [4],
where the elements of a theory based both on extended
interval analysis [1,2,3] and on segment analysis [5,6]
are presented. The theory thus obtained leads to some
interesting results on interval functions which can be
considered as generalizations of classical theorems for
real functions. Some applications of these results to
problems of existence and uniqueness of solutions of

first order differential equations are given.



1. The interval space <I(R),+,-,->

Let R be the set of reals and let R = RU {—=} U {=}.
We shall denote the set of all closed intervals on R by
I(E), and the set of all compact intervals on R by I(R).
Intervals with coinciding end-points are also admitted so
that R € I(R) and R < I(R). If a € R then [a,al is a
point interval and a = [a,a] € I(R) < I(R). The void

interval @ is also an element of I(R) and I(R).

Partial orderings in I(R). Let A = [a,a) and B = [Q,g]

be elements of I(R). We say that A is less than or equal

b. We thus introduce

(B
fia

to B and write A < B if a ¢ b and a
a partial ordering in I(R). Similarly the relations

<,2,> are introduced.

Another partial ordering in I(R) is based on the rela-
tion inclusion; in this case the intervals are considered
as sub-sets of R. More precisely, A contains B (symboli-

cally A > B), if a < b and a > b.

Set-theoretic operations. The joint of two intervals

A = [a,al, B = [b,b] is called the interval A v B = [min{a,b},
max{E,E)], that is A v B is the minimum interval containing

both A and B. The joint of two intervals is also an interval



and therefore the concept of joint is different from
the concept of union of intervals in the sense of set

theory.

By intersection of two intervals A and B we mean
their intersection in set-theoretical sense. The inter-
section of two elements of I(R) is also an element of

I(R) and more precisely

[max{a,b}, min{a,b}]l, if A A B # @&,
AAB={

@, otherwise.

Arithmetic operations in I(R). Let A = [a,al and B = [b,b]

be elements of I(R). The interval A + B = [a+Db, a+b] is
the sum of the intervals A and B. The interval
A -B=[(a-b) v (a-b)] is the difference of A and B. The

number w(A) = E—Q is called the width of A. We thus have

1

-bl, if w(n) > w(B),
a-b, a-b)

1’
’

if w(A) < w(B).

Let o € R. The interval oA = {[ea,0al, a>0; [aa,0al, a <O}
is called the product of a and A. The following properties
hold true for these three operations:

1. (A+B)+C = A+(B+C);

2. A+B = B+A;



3. For every A € I(R) we have 0-A = [0,0] = 0O;

4. If aB > O, then (a+B)A = oA+BA and (a-B)A = oA-BA;
5. af(A+B) = oA+aB; oa(A-B) = aA-aB;

6. (aB)A = a(BA);

7. 1-A = A;

8. For every two elements A and C belonging to I(R)
such that w(A) < w(C) there exists B € I(R), so that
A+B = C. For every two elements belonging to I(R) such
that w(A) > w(C) there exists an element B € I(R), so that

A-B = C.

The space <I(R),+,-,.> is called an interval space [ 2].
We shall extend this space to the space <I(R),+,-,.> by
extending the arithmetic operations for infinite intervals.
To this end it is sufficient to set: (+w)+a = +o for

a € RU (+=); (+=)+(-») = [~=,+=]; (-=)+a = -= for

o € R U (-=); (==)+(+=) [-2,+»); (+x)-a = += for

a € RU (==); (+=)-(+=)

0; (~»)~a = -» for a € R U (+=);

() =(-=) = 0; 0-(¢t») = [-=,+=]; a-(2tw) = 3= for a € R~ (0}.

For example, if a,8 € R, then we have [oa,+2]+[B,+=] =

[u+B,+m]; [Ot;""“]—[—“’,ﬂ]

[+2,4+2] = 4o [a,+=]-[8,+>] =
[(a-B) v 0); O¢[a,+>] = [-o,+>]; [-o,a)+[+o,+®] = [-w, +=];

0-[-=,8] = [~=,+=].



We note that A-B # A+(-B), where ~-B = (-1).B. The
equality A-B = A+(-B) takes place exactly when A € R
or B € R. Similarly, A+B # A-(-B) in general and
A+B = A-(-B) exactly when A € R or B € R. For convenience,
we use the following notations: A © B = A+(-B),

A®B = A-(-B).

It is easily seen that A@® B c A+B and A-B « A © B.
We also have A B = B@ A; o(A ®B) = oA @ aB;

a(A ® B) = oA © aB.

Let A, B, C, D € I(R). Denote u, = u,(3,B,C,D) =
(w(A)-w(C)) (w(B)-w(D)), u, = u,(a,B,C,D) = (W(R) -w(B){W(C)—w(D) ).

Then:

(A~C)+ (B-D), if ¥y o,

v

9. (A+B) - (C4D) = {
(A-C)®@(B~-D), if My < 0;

(A +C)

(B+D), if u2;0,

10. (A-B) + (C-D)

{(A@c) - (B@D), if u, < O, u; 20,

(A®C)G(B®D)I if 112 < 0, 1-11 < 7

v

(A-C) - (B-D), if

v
O

P! o,

v

Uy 2

11.  (A-B) - (C-D) {(A-C)@(B—D), if uy 2 0, uy < O,

(A®C) - (B®D), if uy < 0;

(A®C) - (B@D), if u, 20, uy 20,
12. (a-B)@ (C-D) = {(A@C)@(B@D), if yy 20, uy <O,

(A+C)-(B+D), if u2<0;

13. (A-C) @ (B-D)

n

(A+B) - (C+D) < (A-C) + (B-D).



Interval norm in I(R). Consider the function

l-l: I(R) - [0,+»] defined for every interval A = [a,a]
by ||all = max{|a|,|a]}. This function is an interval

norm in the following sense:

1. |lall2 o0 and ||a]l =0, iff A = [0,0] = O,
2. lleall = [of lIall ,
3. [la+Bll < llal} +iiBll ,

for every A,B € I(R) and a € R.

Moreover we have ||A-B|| < |[a[[+{|Bl].



2. Interval functions. S-limit and S-continuity.

By an interval function we mean a function G, which
takes values in the interval space I(R). We shall assume

that G is defined in some sub-set @ of the metric space L.

Let z € 9. The endpoints of the interval G(z) will
be denoted by g(z) and g(z). Thus we determine two real
functions g and g on 2 such that G(z) = [g(z),a(z)] =
g(z) v g(z). Conversely, if ¢ and ¢y are two arbitrary
real functions defined on @, then we can define an interval

function by means of G(z) = @(z) v y(z).

Limit and continuity of interval functions. Let

G(z) = [g(2),g9(z)] be an interval function defined on Q.
We say that z, is a limit point of @, if every neighbour-

hood of 2z, contains points of Q.

Let z, be a limit point of Q. We say that G(z) has a

limit when z - z_ if the limits llmz_'Zo g(z) and

lim g(z) exist. We call the interval
z-z
limzﬁzoG(z) = [limzﬂzog(z),limz4zog(z)] the limit of G when
zZ -2z .
o

For arbitrary interval functions F,G which have a limit

when z - z, we have limzazO(F(z)* G(z)) =

(lim F(z)) * (lim
o 2-

. oG(z)), where * is an arbitrary

z

arithmetic operation in <I(R),+,-,->.



We say that G is continuous at zg € @, if it has a
limit when z - zO and G(zo) = llmzez G(z), that is

o
oz g(z).

glzy) = lim_ g(z), g(z ) = lim,
(o] o}

S-limit of interval functions. Let G(z) = [g(z),g(z)] be

defined on @ < L and z, be a limit point of Q.

Definition 1. We call the interval [Zimzﬁzog(z),Zimzazog(z)]

the S-limit of G when z - 2, and denote

S-ZiMZ*z G(z) = [Zimzaz g(z),lzmzﬁz glz)l.
o o 0

Every function has a S-limit when 2z - Z, if z, is a

limit point. For example consider the situation when G is
(n)
’

defined in the set of naturals, that is G(n)=G n=1,2,...,
is a sequence of intervals. In this case the S-limit of

{G(m}:=.l when n » = is

. (n) _ .
s-lim G = [lim g

—C0

The following definitions of S-limit are equivalent:

Definition 2. S-1lim, G(z) = Neso Vo<|z—zol<6,zE QG2

o

Definition 3. S—lzmz*zoc(z) = Zlméao VO<IZ_ZOI<6:ZE nG(z).



The functions @(8) and ©(8), defined by [@(s),9(s)] =

$(9)

e V0<|z—zo|<6,z€QG(z) are monotonic and therefore

the limits limaqog(ﬁ) and liméqow(d) exist, so that

1 ¢(8) exists as well.

lmG*O

The equivalence of the above three definitions is

easy to be noticed. Indeed, we have [limzﬁzog(z), limz»zOE(Z)]

= [llmsaolnfo<lz—zol<6,2603(z)’ llms»osupo<Iz—Zol<&z€Qg(z)]

llm&*ollnfo<lz-zo|<6,ZEQE(Z)'suPo<Iz—Zol<6,z€ﬂg(z)]

= 1lm6»ovo<Iz-z°|<6,z€QG(z)‘

On the other hand A6>o¢(6) c ¢(8) so that

A5>°¢(6) [ lim5*0¢(6). We also have ¢(61) > ¢(8) for 61 > 8

which implies ¢(61) > lim640¢(6) and A6>o¢(5) = lim6*0¢(6).

We thus obtain As>o?(8) = lim64o¢(5)-

We shall note some elementary properties of the S-limit.

1. Let A € I(R) and w € {<,>,5,c}. If the relation
G(z)wA holds true for every 2z from some neighbourhood of

z then we have (S—limzﬁzoG(z))wA.

ol
2. Let A = S—limz_q’z G(z). Then for every >0 there
o
exists 6>0 such that A+E o G(z) for 0 < Iz-zol < 6§, z € Q,

where E = [-¢,e].

3. If limzazoG(z) exists, then S—limZ*zOG(z) = llmz»zoc(z)‘
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Theorems for S-limits.

Theorem 1. If the interval functions F(z) and G(z) are
defined on Q@ < R and 2, is a limit point of Q, then

S—ZimZ*ZO(F(z)v G(z)) = S—ZimzﬁzoF(z)v S—ZimzqzoG(z).

Proof. Denote H(z) = F(z) vG(z) = [min{f(2),g(2)},

max{E(z),3(z)}] = [h(z),h(2)]. We have s-lim H(z) =

o
(lim,, h(z), Tim__, h(z)) = [lim  min{£(2),g(2)},
o o o
lim, . max{f(z),g(z)}] = [min{lim _  £(z),lim _ g(z)},
o o o
max{TTEZ*z f(z),TIﬁzaz g(z)}l = S-lim, . F(z) v S-lim__ G(z).
o o ) )

This theorem reveals the natural relation between the
operation "v" and the concept of S-limit. A similar relation

does not exist for the other operations in I(R).

Theorem 2. Let F and G be interval functions defined on

Q « L and 3, be a limit point of Q. Then we have

S—Zimzﬁzo(F(z) *xG(z)) < S—ZimzazoF(z)* S—ZimzazoG(z)

for x € {+,8e},

S-lim (F(z) xG(z)) > 5-1lim F(z) * S-1im G(z)
ZEE EREN LR

for * € {-,e}.

Proof. Let * = +. We have 1imzﬁ

Zo(g(z)+51(z)) > lim

f(z) +
2~z =

rﬂz_,zog(z); ‘ﬁ?n‘z_.z (F(z)+g(2)) < Iim, . f(z) +mz c)a(z)

=z
(o] (o]
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and therefore S—limzﬁzo(F(z)+G(z)) =

[;gmz*zo(g(z)+g(z)),Iiﬁz (F(2)+g(2))] < [lim  f(2)+

%o o
lim, . g(2),Iim,_  f(z)+lim_ g(z)] = [lim__ £(2),
o o o o
lim,, E(2)] + [lim . g(z),lim,_ g(z)] =
o o o
S—limz_>Z F(z) + S—limz_’z G(z).
o o
Let * = -, It is easy to check that the following
inequations hold true: lim . (£(z)-g(z)) <
o

lim . £(z)-lim g(z) < lim
o o

Z ——Z-Z Z-2

(£(z)-g(z));
O

lim  (£(z)-g(2)) < lim, . T(z)-Iim,  g(z) < lim,
(o] (o] o o]

(£(z)-g(2)).

Further, we have S-lim F(z) S-1lim Gl(z) =
22 z7z

(limz%zoﬁ(z)—limzﬂzog(z)) v (limzqzof(z)—limzﬁzog(z)) c

[11mz

_,zo(g(z)-g(Z)) ,limz_,zo(g(Z)-g_(Z) )lv [@z_,zo(f(Z) -g(z)),

YAnd'A =z

Iim (F(2)-g(2))] = s-lim,_ (£(z)-g(z)) v
(o] (o]

S~1im
z-zZ
o

s—limZ*zo([ﬁ(Z),E(Z)]-[g(z),§(z)]) = s-lim,

(f(z)-g(2)) = s-lim__  ((£(z)-g(z)) v (E(z)-g(z))) =
[o]

-2z

(F(2)-G(z)).
o

For the operations ® and e analogous arguments take

place.

Theorem 3. Let F(z) and G(az) be defined on @ < L and a,

be a limit point of Q. If Zimzﬂz G(z) exists, then
o
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1. S—Zimzazo(F(z)x G(z)) = S—ZimzazoF(z)* S—ZimzquG(z)

for * € {+, e1};

2. If w(F(z)) 2 w(G(z)) in some netghbourhood of 2,5

then S-1lim (F(z) xG(z)) = S-lim F(z) *
RN 22z

S—ZimzquG(z), * € {-,e}.

Proof. By the above assumption we have S-limz_’z (F(z)+G(z)) =
o

[limz_)zo_g(z)ﬂt»limz_'zog_(z),limz_’z f(z)+limzazog(z)] =

o
S-limz }E‘(z)J!-limz_'z G(z).
o o

-2

Furthermore, S-lim (F(z)-G(z)) = S-lim
z-2 b4

(£(2)-g(2))]1 = [Lim,_ (£(z)-g(2)),Tim,_ (E(z)-g(z))] =
(o] o}

—Z

[(£(2)-g(2)),
(o]

[lim .

2z

Og(z)—limZ*zog(z),limze oz

‘f‘(z)—limz g(z)] =

o o

S-1lim F(z)-1lim
Z-'Zo Z-’Zo

G(z).

The arguments for the operations e and e are analogous.

Theorem 4. Let a(z) and G(z) be a real and an interval
function respectively, defined on @ < L and z, be a
limit point of Q and the limit Zimzﬁz alz) = a, exist.

o

Then S_szz»zo(a(z)G{Z)) c uos—ltmzazoG(z)' Moreover,

if at least one of the following conditions holds true:

al o, Z 0; b) ||S—Zimz

-2

G(z)]|| < += ; then
o

S—Zimzﬁzo(a(z)G(z)) = aoS—ZimZ*zoG(z).



Proof. Let ey > O. Then a(2z) > O in some neighbourhood

of z_ and thus S—limzézo(a(z)G(z)) = [1im2*zoa(z)g(z),
limzﬁzoa(z)g(z)] = [a limz»zos(z)’“olimz»zog(z)] =
aOS—limZ*zoG(z).

For a, < O analogous considerations hold true.

Let o = O and ||S—limZ

-2

G(z)|] < += . Then
o

s-lim, a(2)g(z)] =

, (2(2)G(z)) = [limZ
o

a(z)g(z) v lim
o = =z,

—Z

[0,0] =0 = aOS—llmzqzoG(z).

If oy

O and S-limz_’z G(z) is an infinite interval,
o
then it follows that cLOS-limz_'z G(z) = [-=,+=] and the
o

inclusion is obvious.
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3. S—continuity of interval functions

Let the interval function G be defined on & © L and

zg € Q@ be a limit point of Q@ and r be the metric in L.

Definition. We say that G 18 S~-continuous at z, if
S5-lim,, G(z) < G(z,) and that G is S-continuous on

o
Q, if it is S-continuous at every limit point of Q.

Complete graph of the interval functions. Let E < Q.

Consider the functions:

I(E,G,8:z)

inf{y: y € G(t), r(z,t) £ 6, t € E},

S(E,G,8;z) = sup{y: y € G(t), r(z,t) £ &, t € E},
I(E,G;z2) = limg  I(E,G,8;2),
S(E,G;z) = 1lim S(E,G,8;2).

§—0

Definition. The complete graph of G on E ig the interval

funetion F(E,G;z) = [I(E,G;z), S(E,G;2)1 [5].

We see that F(E,G;z) is defined for all points of E:
the closure of E with respect to the topology on L.
We obviously have G(z) < F(E,G;z) for z € E. When E = Q2 we

shall sometimes write F(Q,G;z) = F(G;z).

Theorem 5. The interval function G, defined on Q@ is S-conti-

nuous on Q exactly when G(z) = F(G;z) for every z € @ [5].



Proof. Let F(G;z) = G(z) for z € Q& and let zo € 0 be a

limit point of @. Then S—limz_)z G(z) =
o

llmé»ovo<|z-zo|<6,z€ﬂG(z) < llmé*o[I(G'd:Zo)’S(G’é;zo)] =

F(G;zo) = G(zo).

Let now G be S-continuous on £ and let z, € Q@ be a

limit point of Q. We choose ¢ > O. Since S—limz_'Z G(z) < G(zo),

(o]

there exists § > 0, such that G(zo)+E o (v G(z))

o<|z—zolé6,zEQ

v G(Zo) G(z) = [I(G,é;zo),S(G,é;zo)]. Hence

= v
lz—zoI;G,ZGQ

for § - O we obtain G(zo)+E = F(G;zo). Since € > O is

arbitrary and G(zo) is a closed interval, then

G(ZO) =) F(G;zo). But G(zo) = F(G;Zo) and therefore

G(zo) = F(G;zo).

In the situation when zg is an isolated point of 9 the
equality G(zo) = F(G;zo) is obvious. Thus the theorem is

proved.

We shall further denote the set of all S-continuous

functions on @ by FQ.

Theorem 6. Let G(z) = [g(z),g(z)} be defined on Q. Then
G € Fy exactly when g and g are respectively lower and

upper semi-continuous on Q.
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Proof. If g and g are respectively lower and upper
semi-continuous, then for every limit point z, € Q@ we

have s-lim_ _  G(z) = [1imz_>zog_(z),1imz_’z g(z)] <

o

=z
o]

lg(zy),g(z )1 = G(z).

Conversely, if G is S-continuous, then S—limz_'z G(z)
o

g(z) < g(z),
(o]

G(z,) implies limz*zog(z) 2 g(z,) and lim _,

which means that g and g are respectively lower and upper

semi-continuous.
Theorem 7. If Q@ is a closed sub-set of L, then G € FQ
exactly when the graph of G is a closed set, that is

the set {(z,y): z € Q, y € G(z)} is closed in L x R.

The verification of Theorem 7. is easy and we shall

omit it.

Theorems for S-continuous functions. In what follows we

shall consider some properties for the S-continuous
functions, which are analogous to corresponding properties

of the continuous real functions.

Theorem 8. If F(z),G(z) € FQ, then H(z) = F(z) * G(z) € FQ

for * € {+, e ,Vv}.
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Proof. Let z, € @ be a limit point of Q. Then from
Theorem 1. and Theorem 2. it follows that

(F(z) *G(2)) S—limz_’z F(z) *S—limz_'z G(z) c

S—limz
o o o

-2

F(zo) tG(ZO) = H(zo).

An such assertion does not hold true for the operations -
and ® . For example, let @ = [-1,1] and
o, X#0, { 1, X#0,

F(x)={ G(x) =

[0,1], x=0; {o,11, x=0.

Then F(z) - G(z) = {-1, x#0; 0O, x=0} is not S-continuous.

Theorem 9. If G € Faq and f is a continuous real function
then H(z) = G(z) * f(z), where * € {-, ®,.}, is

S~-continuous.

The proof follows directly from Theorem 3. and

Theorem 4.

Theorem 10. If G is S-continuous on @ c L, and h is a
eontinuous mapping from D < L1 into Q, where L, and L,
are metric spaces, then the function H(t) = G(h(t)) <is

S-continuous in D.

Proof. Let t, €D be a limit point of D. From the continuity

of h it follows that h(t) - h(to) when t - to' Then
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S—limtatoH(t) = S—llmt»toG(h(t)) c S-lim

G(h(t,)) = H(ty).

G(z) <«
z»h(to)

Theorem 11. Let Q@ be a compact sub-set of L, G € F
and G(z) be a finite interval for every z € Q.

Then the union of the values of G is a compact set.

Proof. N = {y: v € G(2), z € Q}. Let {yn}:=1 < N and
{z } _, be such that y € G(z,)). Since 2 is compact

there exists a sub-sequence {z, }:_1 which converges to
K k=

@

some z € Q. Then S-limkq G(znk) < G(zo) and consequently

S-—limk_’wynk © G(z ). When k > v, Yny € G(z°)+[—1,1] holds

true. Since G(zo)+[-1,1] is a compact interval there

]
exists a sub-sequence { } which converges to some
n 1
s s=

Y, € G(zo)+[-1,1]. Using the fact that S-lim < G(z,)

s»wynk
we obtain Yo € G(zo) < N, which proves the compactness

of N.

Corollary 1. Let Q be compact, G € F and |[|G(z)]|| < =
for every z € Q. Then there exist { € Q and p € R

such that p € G(g) and G(3) < p for z € Q.

In what follows we shall make use of the following
relation A =< B between two intervals A,B € I(R). By Ax B

we shall mean that either A « B or A o B.
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Theorem 12. Let 2 = A be a compact interval in R,

A = [a,b)l, GE€ F, and A € I(R). If A < G(a) v G(b),

A
then there exists & € [a,bl, such that G(g) =X A.

Proof. In the situation when A < G(a) or A < G(b) the
theorem is obvious. Let A ¢ G(a), A ¢ G(b). Without loss

< A < G(b). Denote

of generality we may assume that G(a)
A = [c,d], M = {x € [a,b]: g(x) < c} and » = supM. Since
g(a) < ¢, M is not void. The cases » = a and X = b are
easy and will be omitted. Let A # a and » # b. Then we
have g(A) < lim ,g(x) < c. If g(}) 2 d, then G(}) o A
and the theorem in this case is proved. Let g(A) < d. We
have g(1) > Iim ,,9(x). Therefore there exists § > O such
that g(x) < d whenever |x-Al < §. Let £ € (XA,A+8) 0 A.
Then £ > A implies £ € M and g(£) > c. From |g-Al < § we

obtain 5(5) < d and consequently G(t¢) > A, which proves

the theorem.

Corollary 2. If G € Fps A = [a,b] « R and X\ € G(a) v G(b),

then there exists £ € [a,b]l such that )\ € G(g).

Corollary 3. If G € Fps & = {la,b] ¢ R, then the union of

the values of G is a compact interval.
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4. Interval functions of a real variable. Differentiation.

In the previous chapter we assumed that the interval
functions are defined in some metric space L. In the
special case when L = R we speak of interval functions

of a real variable.

Derivatives and S-derivatives. Let the interval function G

be defined on a neighbourhood of X, € R. Then the interval

G'(xo) = S—limh»O(G(xo+h)—G(xo))/h is called the

S-derivative of G at the point Xq- The interval G'(xo)
(finite or infinite as the case may be) always exists. If

the limit llmh*o(G(xo+h)—G(xo))/h exists and is a finite

interval, we say that G is differentiable at Xg and that
' o - . . .

G (xo) = llmh»o(G(xo+h) G(xo))/h is the derivative of G

at xo.

It is immediately seen that the S-derivative is a
generalization of the concept of derivative both of interval
and real function. Therefore the utilization of identical

notations does not lead to confusion.

The definition of the S-~derivative may be formulated
also in the following form: The interval D is an S-deriva-
tive of G at X, if D is the interval of minimum width

such that G(xo+h)—G(xo) < hD+0(h), where O(h) is an inter-



- 21 -

val function with the property O(h)/h » O when h » 0.

Note that every real function has a S-derivative,
and the S-derivative of a real function can be an inter-
val of nonzero width. For example, the S-derivative of

f(x) = Ixl at x = 0 is the interval [-1,1].

Theorems for differentiation.

Theorem 13. Let G(x) = [g(x),g(x)] be defined on some

interval A © R. Then G'(x) = g'(x) v g'(x).

Proof. G'(x) = S-lim (G (x+h)~G(x))/h =
§-lim,  [(g(x+h)-g(x))/h v (g(x+h)-g(x))/h} =
(S-limhﬁo(g(x+h)~g(x))/h) v (S-limh*O(E(X+h)'§(X))/h) =

g'(x) v g'(x).

Definition. We shall say, that the interval function G
is w—increasing in the interval A, if Ty < Ty,
z, 5 €4 implies Ghﬁ) c G(xy); G is w-decreasing in
3

A, Zf T, < Ty, x1,2 € A implies G(a:z) = G(xz).

Definition. Assume that F and G are two w-monotonic
interval functions defined on some interval A. We
shall say that F and G are equally w-monotonic on A

(e. w-m. on A), if either both F and G are w-increasing
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on A or both are w-decreasing on A. We say that F
and G are differently w-monotonic on A (d. w-m.
on A), if one of the functions F, G ig w-increasing

on A and the other is w-decreasing on A.

Theorem 14. Let F and G be defined on A = R. Then
F'(x) ® G'(z) < (F(z)+G(xz))' < F'(z) +G'(x) and

moreover

a) If F and G are e. w-m. on A and at least one of
them is differentiable, then (F(z)+G(x))' =

F'(x) +G'(x);

b) If F and G are d. w-m. on A, F and F+ G are
e. w-m. on A and G is differentiable, then

(F(x) +G(x))' = F'(z)e®G'(x);

e¢) If F and G are d. w-m. and both F, G are differen-

tiable on A, then (F(x)+G(z))' = F'(x)eG'(x).

Proof. From section 1, property 13 we have (F(x+h)-F(x))/h
® (G(x+h)-G(x))/h < ((F (x+h) +G(x+h)) - (F(x)+G(x))) /h <
(F (x+h) -F (x))/h + (G(x+h)-G(x))/h. Hence for h -» O Theorem

implies the formulated inclusions.

In the case a) we have ((F(x+h)+G(x+h))~(F(x)+G(x)))/h
= (F(x+h)-F(x))/h + (G(x+h)-G(x))/h. Setting h » O and

using Theorem 3 we obtain the equation.
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In the case b) we have ((F(x+h)+G(x+h)) -
(F(x)+G(x)))/h = (F(x+h)-F(x))/h & (G(x+h)-G(x))/h.
Setting h » O aud using Theorem 3 we obtain the necessary

equation.
Case c¢) is trivial.

Continuous analogous of Theorem 14 can be proved

for other operations in I(R) as well.

Theorem 15. Let @ be a continuous real function, defi-
ned on the interval A, ©(t) € AZ for t € A, F be

an interval function defined on A H(t) = F(o(t))

70
ts an tnterval function, defined on A. Assume also
that ¢ is differentiable at t, € 8. Then we have

r T : '
H (to) [ F'(w(to)) © (to). Moreover, if ¢ (to) £ 0

then H'(to) = F’(w(to))w'(to).

Proof. We have (H(to+h)-H(to))/h = (F(w(to+h))-F(w(to)))/h
= ((Flo(t +h)) =F(0(t)))/ (@t +h) =0 (t ))) - ((@(t_+h)
w(to))/h). Since w(to+h) - w(to) for h - 0 and using
Theorem 4 we obtain H'(to) S S—limhﬂo(F(m(to+h))—
F(w(to)))/h c S-limh*o(F(w(to+m)—F(w(to)))/(w(to+h)—w(to))'

limh»o(@(to+h)_w(to))/h S Fl(o(t))) o' (t)).

If w'(to) # O, then ¢ does not have an extremum at

to' From the co..tinuity of ¢ it follows that all numbers
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in every sufficiently small neighbourhood of w(to)

are functional values of ¢(t) when t changes in some
neighbourhood of to. Then S—limhﬁo(F(w(to+h))—
F(@(to)))/(w(to+h)—¢(to)) = S_limuao(F(w(to)+u)_
F(w(to)))/u = F'(w(to)). From the differentiability

of o, w'(to) # 0 and Theorem 4 it follows that

H'(to) = S—limhao(ﬂ(to+h)—H(to))/h = S—limhao(F(w(to+h))—
F(0(t)))/ (@tg+h) =0 () -1im | (0 (t +h) -0 (t,))/h =

F'(0(t )0 (£) .

Mean value theorems. In what follows we shall consider

some theorems analogous to mean value theorems for the
real functions, demonstrating thereby the properties

of the S-derivative of an interval function.

Theorem 16. Let F be an interval function, defined on
the interval & = la,bl. Then (F(b)-F(a))/(b-a) <
vxeAF'(x).
Proof. We choose an arbitrary e > 0 and denote E = [-¢g,¢e].
Since F'(x) = S—limh*o(F(x+h)—F(x))/h, there exists
5, > O, such that F'(x)+E o (F(x+h)-F(x))/h for
|h| < §,. We denote &, = (x-8_,x+§,). Since A is a compact
interval and Ugen Ax > A there exist
Xy < Xy < < Xy € A, such that U?=1 Axi bl A.‘Without

loss of generality we may assume that Xy =2, X, = b.
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Let Y5 €A, N A

. Then y.-x, < § < 8
i i+1 1

X -y .
i Xy i+1 41 Xi41

and Flx; ) -Fly;) © (F' (x5 ) 4E)(xy 4-y;) Fly;) -F(xy) <

(F'(Xi)+E)(yi—xi) and therefore g(xi+1)—£(yi) €

€' (x; HE) (%3497Y3) e £y -E(x5) € (F'(x)+E) (y;-%,) .

n-1
Thus we have f(b)-f(a) = i£1(g(xi+1)-ﬁ(yi)+£(yi)—£(xi))
n-1
eigg(F'(xi+1)+E)(xi+1—yi)+(F'(Xi)+E)(yi-xi)) S
n=1
(Vyeal" (X)+E)iZ‘(lxi+1_yi+yi_xi) = (VxeaF ' (X)+E) (b-a).

Analogously we have T (b)-f(a) € (vxeAF'(x)+E)(b—a). Then

F(b)-F(a) = [(£(b)=£(a))V(E(D)~E(a))] & (v, ,F'(X)+E) (b-a),

which implies (F(b)-F(a))/(b-a) < vx F'(x)+E. Since

€A
€ > O is arbitrary and vxeAF'(x) is a closed interval,

then (F(b)-F(a))/(b~a) c Vg AF'(x).

€

Theorem 17. If F(x) is an interval function, defined
and S-continuous on A = la,b]l and F(a) < F(b), then
there exists £ € [a,bl, such that F'(¢) 3 0. Bestides,
if F is continuous on [a,b) then £ can be chosen in

the interior of la,b].

Proof. Without loss of generality we may assume that
F(a) < F(b). From Corollary 1 it follows that there
exist 51,52 € A = [a,b], such that 2(51) < f(x) and
E(Ez) > E(x) for x € A. Obviously we can assume that

= b. Then F(£) < F(b)

Eqr8, # a. Suppose first that £, = &y
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for all ¢ € [a,b]. This implies that F'(b) =
S—limgqb(F(b)-F(E))/(b—E) 3 0. Let now 52 < b. Then
(£(g,+h)=E(£,))/h 2 O for h < O and (E(gz+h)—E(gz))/h;;o

for h > O which implies that E‘(gz) 3 0. The case g4 < b

is considered analogically.

Let F be continuous. If 51 < b or 52 < b, then the
theorem follows from above considerations. Let 51 = 52 = b.

Then two cases arise:

a) There exists ¢ € (a,b) such that f(b) < f(c) =
E(c) < E(b). Using the fact that F is continuous we have
£(x) < £(c) < £(c) < £(x) for b-x < 6. Let d € (b-8,b).
Then F(d) =< F(c) and from the above it follows that there

exists £ € [c,d] < (a,b) such that F'(g) 3 O.

b) For every c € (a,b) one of the equalities
£(c) = £(b) or £(c) = E(b) holds true. If f£(b) = £(b),
then F(x) = f(x) = f(x) = f(b) = f(b) for x € A and thus
F'(x) = 0 for x € (a,b). Let f£(b) < f(b) and let c € (a,b)
be such that f(c) = f£(b). Then for x € (c-§,c+s) we have
£(x) < £(b)+(E(b)-£(b))/2 = (E(b)+E(b))/2 < £(b) and
consequently £(x) = f(b) wherefrom f'(x) = O for

x € (c-6§,c+8) and F'(c) 3 O.

More generally Theorem 17 can be formulated as follows:
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Theorem 18. Let F be S—continuous on A = [a,b). If
T € (F(b)-F(a))/(b-a) then there exists ¢ € [a,bl
such that tv € F'(g). Moreover, if F is continuous

on A, then & can be an interior point of A.

Proof. Consider the function H(x) = F(x)-1(x-a). We

have H(b) = F(b)-t(b-a), H(a) = F(a), H(b)-H(a) =
F(b)-F(a)-1(b-a) = (b-a) ((F(b)-F(a))/(b-a)) 3 O and
consequently H(b) > H(a). From Theorem 17 it follows

that there exists £ € [a,b] such that H'(§) = F'(g)~-1 3 o,
that is F'(g) 2 1. If F is continuous on A then H is
continuous on A and therefore £ may be an interior point

of A.

The S-derivative as an interval function is not
S-continuous in general. However, as the following
theorem shows, it has some properties which are

characteristic for S-continuous functions.

Theorem 19. Let F be a S-continuous function on A = [a,b].
If t € F'(a) v F'(b) then there exists £ € [a,b]

such that v € F'(g).

Proof. If t € F'(a) or 1 € F'(b) then the theorem is
obvious. Let t € F'(a), t € F'(b). Without loss of gene-

rality we may assume that F'(a) < 1t < F'(b). We shall
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consider two cases:

a) Let (F(b)-F(a))/(b-a) > t. Since F'(a) < 7
there exists c¢ € (a,b) such that (F(c)-F(a))/(c-a)
< 1. Consider H(x) = F{x)-t(x-a). We have H(b)-F(a) =
(b-a) ((F(b)-F(a))/(b-a)-t) > O and consequently
H(b) > F(a). We also have H(c)-F(a) =
(c-a) ((F(c)-F(a))/(c-a)-1) < O and consequently
H(c) < F(a). We thus have F(a) c H(c) v H(b). From
Theorem 12 it follows that there exists d € [e¢,b] such
that H(d) = F(a) that is H(d)-F(a) = F(d)-F(a)-t(d-a) 3 O
and therefore t € (F(d)-F(a))/(d-a). Using this and
Theorem 18 we obtain that there exists £ € [a,d] such

that F'(g) 3 t.

b) Let now (F(b)-F(a))/(b-a) < 1. Since F'(b) > 1
there exists c € (a,b) such that (¥F(b)-F(c))/(b-c)
> 1. Further the arguments are as in previous case,
with the only difference that the places of a and b are

changed.

Corollary 4. If F is S-continuous on A = [a,b] then F'(x)
has the property F'(x) N S—Zimt#xF'(t) £ @ for

every x € A.

Corollary 5. If F is S-continuous on [a,b] and f, F are
differentiable at x, € [a,b], then F'(x_ ) <

S-timy, B! ().
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This corollary is true not only for differentiable
but for continuous functions as well. More precisely

the following theorem holds true.

Theorem 20. If F(x) = [fl(x),fz(x)] 18 continuous on

A = [aq,b] then F”(xo) < S-Zimx*on'(x) for every

x € A,

Proof. Let X, € A, If F'(xo) is a number (degenerate
interval) then f1 and f2 are differentiable and the
theorem follows from Corollary 5. Let F'(xo) = [r,s]
be a nondegenerate interval and let X € (r,s). Since
F'(xo) = [r,s] = fi(xo) v fé(xo) then there exist

i € {1,2} and there exists a sequence

Ker Xppeeay Xogooey X € A, such that lim X

X =
n-—+> n (o]

and lim (£, (x )-£;(x)))/(x -x.) € [r,A]. Thus it

follows that for n>v it holds that

p, = (fi(xn)-fi(xo))/(xn-xo) < A. From Theorem 18 it
follows that there exists En € (xnvxo) such that

P, € fi(ﬁn). Since X, 2 X . we have En > X, Analogically
we determine j, q, and n such that fi(“n) 3 q, > 2. Then

s ' s
S 1lmx»x F'(x) o S 11mn

mF'(En) o> S-lim f!(gn) >
(o]

- n-»e i

S-lim P

oo < 2 and S-lim

X F'(x) o S-1lim

GFling) >
o

n n—»

S-1lim f!(nn) o> S-1lim

s - 0] T
ool q, 2 A. Using that s-lim _  F'(x)

—»0 =
n n o

is an interval, we obtain that S_limx»x F'(x) 3 ) for
o



- 30 -

every :» € (r,s). Therefore S-limx»x F'(x) o (xr,s).
o
But since S-limx_'x F'(x) is a closed interval, we have
o

S-limxﬁon'(x) > [r,s] = F'(xo).

Other theorems on S~derivative. By means of the S-deriva-

tive a number of assertions for interval and real functions
can be formulated. These assertions do not presume
differentiability (in the familiar sense) of the functions

invalued.

Using the mean-value theorems given above the following
theorem can be easily verified; in its formulation we use

the notation wF(x) = w(F(x)).

Theorem 21. Let F be defined on A = [a,b]. Then

a) F is monotone increasing on A exactly when

F'(x) > 0 for x € A;

b) F is monotone decreasing on A ezactly when

F'(x) < 0 for x € A;

e) F is w-increasing on A exactly when wé(m)

v
(o

for x € A;

d) F is w-decreasing on A exactly when wé(x)

|A
o

for x € A;
e) F satisfied a Lipschitz condition on A with constant K

(in the sense that |F(x)-F(y)|| < XK|z-y| for any

A

x,y € A), exactly when 7))

[

K, = € A.



These assertions apply for real functions as well.
For example f(x) = ]x| is a Lipschitzian function with
a constant 1. We have f'(x) = {-1, x<0; [-1,1], x=0;

1, x>0} which implies |[£f'(x)]| < 1.

Hausdorff distance. Differentiation of sequences of

interval functions. Let F and G be interval functions

S-continuous on a closed sub-set ¢ of the metric space L.
By Hausdorff distance r(F,G) between the functions F and

G we shall mean the Hausdorff distance between the graphs
of F and G considered as closed point sub-sets of L x R.
By Hausdorff distance between arbitrary interval functions
we mean the Hausdorff distance between their complete

graphs.

Let ¢ = (z¢,y¢) € LxR. By ¢ €F we shall denote that
the point ¢ belongs to the graph of F’that is y¢ € F(z¢).
Then the Hausdorff distance between two functions can be

written as follows: r(F,G) = max{sup¢€Fian€Gp(¢,F),
suprEGinf¢€Fp(¢,r)}, where p is the metric in L x R. If °q
is the metric in L then p can be for example p(¢,I) =
max{p1(z¢,zr),ly¢—yrl}. The number h(F,G) =
sup¢€Finfr€Gp(¢,F) is called one-sided Hausdorff distance
from F to G. Obviously r(F,G) = max{h(F,G),h(G,F)}. We

shall use a simple lemma for estimation of the Hausdorff

distance.
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Lemma 1. If for every z € Q and y € F(z) there exist
£ € Q and n € G(g), such that pl(z,i) < o,
ly-nl < o« , then we have h(F,G) < w. Conversely, if
W(F,G) < a then for every z € Q and y € F(z) there
exist £ € Q@ and n € G(&) such that ol(z,g) < o and

y=n| < a.

Proof. Assume that for every z € @ and y € F(z) there
exist £ € @ and n € G(£) such that p1(Z,E) < o and
ly-n| < o. Let ¢ € F, ¢ = (z,y). Then there exist § € @

< a and |y-n| < o that is

and n € G(g) such that p1(z,g)
T =(£,n) € G and 0(¢,T) < o . Therefore

0(¢,T) < p(¢,T) < a for every point ¢ € F which

lanEG

implies h(F,G) = SUP¢€Fian€Gp(¢'r) < a.

The second part of the theorem is proved analogously.

Theorem 22. Let {Fn}::l be a sequence of interval functions

defined on A = la,bl which converges to the interval
function F. If H is S-continuous on A and such that

h{Fé,H) 5 0 for n » o then F'(x) < H(x) for x € A.

Proof. Let X € A and ¢ > O fixed. From the S~continuity
of H it follows that there exists & > O such that
H(X)+E o H(x) for |x-X!| < & where E = [-¢,c]. Since

h(FA,H) -+ O then for n > v we have h(Fﬁ,H) < min{68/2,¢}.
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Let t € A, |t-xX| < §/2. From Theorem 16 we have

(Fn(t)—Fn(i))/(t—i) c vpe[tVE]F;l(p) . Let p € [tvX]

and y € Fﬁ(p). From Lemma 1 it follows that there

exist X, € A and z € H(xp) such that |p—xp[ < min{§/2,¢}
and |y-z| < min{é/2,¢} whenever pr—§|;=|xp-p|+|p—§| <
§/2 +8/2 = 6 and H(X)+2E o H(xp)+E > y+E 3 z. Therefore

H(X)+2E > Voelt v xIFn(P) 2 (F, (t)-F_(x))/(t-X). Thus
for n » « we have H(X)+2E o (F(t)-F(X))/(t-x) and for

t - X we obtain H(X)+2E > F'(X). Since ¢ is arbitrary
fixed and H(X) is a closed interval then H(X) o F'(X)

for every X € A.

The above theorem is an analogue of the corresponding
theorem for differentiation of sequences of real functions.
We note that the uniform convergency is replaced by one-
sided Hausdorff convergency, which naturally leads to a

weaker result (inclusion instead of equality).
Since the application of Theorem 22 demands certain
knowledge on Hausdorff distance we give below two lemmas,

which will be used further on.

Lemma 2. Let F, G and H are defined on a closed sub-set Q

of L. If H(z) < F(z) for z € Q@ then h(H,G) < h(F,G).

The proof follows trivially from Lemma 1.
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Lemma 3. Let F be S—continuous on a closed sub-set Q
of R? and let {wn}::I be a sequence of real
functions defined on the interval A such that:

z) (x,wn(x)) € Q for x € A;

i7) {wn}zzl is uniformly convergent on A to the

Lipschitzian with constant m funetion ¢. Then
h(Hn,H) -» 0 for n = = where Hn(x) = F(x,mn(z)&

H(x) = F(z,p(x)).

Proof. Choose ¢ >0 and x € A. From the S-continuity of F
it follows that there exists Gx < ¢ such that
F(x,9(x))+E o F(t,y) whenever |t-x| < §, and lo(x)-y| < 8,.

Denote A = (x-6/2,%x+8/2) . Since UXEAAX > A and A is a

compact interval then there exist x1,x2,...,xn such that
U2=1Ax~ 5 A. From the uniform convergence it follows that
i

for n > v we have Iwn(x)-w(x)| < min {Gx_/2,6x>/2m}.
i=1,...,n 1 1

Let n > v, X € A and z € F(E,wn(i)). There exist x; such
that X € A, and therefore |x-x.| < &_,./2,

xi 1 = Xi
lo () -0(x) | < Lo, () -0 () | + lo(x)-o(x) | <
Sxi/2+m6xi/(2m) = Sxi implying F(xi,w(xi))+E o F(x,0(x)) 3 z.
Therefore there exist 3z; € F(x;,0(x3)) such that IE-zil < €.
Thus we have |X-x.| < 8, < ¢ and |z-z,| <e and Lemma 1

1 Xi 1

implies h(Hn,H) < ¢ for n > v, that is h(Hn,H) - 0

for n- oo,
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5. Integration of interval functions of a real argument.

Definition. Let F(xz) = [f(x),f(xz)] be an interval function
defined on the interval A = {a,bl. If f and f are

integrable real functions on A we say that F is

b b b
integrable on A and write [F(x)dx = [Ii(x)dx, f?(x)dx].
a a a

Integration of S-continuous functions.

Theorem 23. Let F be an integrable interval function on la,b]

x
and let G(x) = [F(t)dt. Then
a

7) G is w-increasing on & = [a,b];
27) G is differentiable almost everywhere (a.e.) on A

and G'(x) = F(x) a.e. on b;

i1%7) if F is S-continuous at @, € [a,b] then

G’(xo) c F(xo).

Proof. Let F(x) = [£(x),E(x)] and G(x) = [g(x),g(x)]. It

be
follows from the definition that g(x) = [f(t)dt and
a

X
g(x) = [E(t)dt. Then w(G(x+h))-w(G(x)) = g(x+h)-g(x+h)-
_ 2 x+h _ x+h
g(x)+g(x) = [ (E(t)-£(t))dt= [ w(F(t))dt > O. Thereby
X X

i) is verified.
It is known from the theory of real functions that g, g
are differentiable a.e. on A as well (see for instance

[8], p. 371). Hence it follows that G is differentiable
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a.e. on A and G'(x) = g'(x) v g'(x) = £(x) v £(x)

= F(x) a.e. on A.

Let us prove now part iii). In this part the derivative

should be considered as S-derivative. We have

x+h
G'(x,) = S—limhﬁo(G(x+h)—G(x))/h = S—limhﬁo( i F(t)dt)/h <

S-1lim F(p) F(xo). Note that the last

v
h-o p€[xo—h,xo+h]
inclusion is of interest only for the points where G is

not differentiable.

Corollary 6. If F is S-continuous on la,bl then F(G',x) < F(x)

for x € la,b].

For real functions (under certain assumptions; see for

b
instance [8], p. 378) the equality f(b)-f(a) = [f'(t)dt
a

holds true. In this section we shall formulate an analogue
of this formula for interval functions. This analogue is

based on a theorem for inclusion which will be given below.

Theorem for inclusion.

Lemma 4. Let f and m be two real functions, defined on

A = [a,b]l and m be integrable on A. If f'(x) < m(z) for

b
x € A then f(b)-f(a) < [m(t)dt.
a

The proof is based on the following results:
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Lemma 5. If f is an absolutely continuous real function on A
and E s a sub-set of A such that w(A~NE) = 0 and f

. . . ' 7 ’
is differentiable on E then f (xo) c S Zlmxaxof (x)
r€FE

where u is the Lebesque measure on R.

Proof. Let Xo € A. From the absolute continuity of f it

X
follows that f(x)—f(xo) = [f'(t)dt = sign(x-xo)-

o)

i f'(t)dt c (x-x

)v f'(p) and therefore
[xvxo]ﬂE o pE[xvxo]nE

f'(x ) = S-1lim
o X

4xo(f(x)—f(xo))/(x-xo) c

-113 1 = G=114 1
S 11mx—»xova[xvxo]nEf () 5 llmxaxQ,xE Ef ).

Corollary 7. If f is absolutely continuous on & and

f'(x) > ¢ a.e. on A then f'(x) > ¢ for x € A.

Lemma 6. Let E be a set with measure zero, F < l[a,b] and
e be a positive number. There exists a monotone
increasing and absolutely continuous function X(x)

such that X'(xz) = 4= for x € E and X(b)-X(a) < €.
For the proof see for instance [8] p. 378.

Lemma 7. Let f be defined on A& = [a,bl. If f'(xz) > 0

a.e. on A and f'(x) > -= for x € A, then f(b) > f(a).



- 38 -

Proof. Let E be the sub-set of A where f'(x) 2 0 is
violated. Choose ¢ > O. According to Lemma 6 there exists
a monotone increasing and absolutely continuous on A
function X(x), such that X'(x) = +o for x € E and
X(b)-X(a) < €. Consider the function g(x) = f(x)+X(x).

We have g'(x) < £'(x)+X'(x). If x € E, then

£'(x)+X'(x) > O and therefore g'(x) > O. If x € E then we

have X'(x) = 4=, f'(x) > -» and therefore

fr(x)+X'(x) = += 2 O which implies g'(x) 2 O. Thus we
have g'(x) > O on A and using Theorem 21 we obtain
g(b) > g(a) and therefore f(b)+X(b) 2 f(a)+X(a) and

f(b)-f(a) > X(a)-X(b) 2 =-e. Since e is arbitrary, then

f(b)-£(a)

\%

0.

Proof of Lemma 4. Consider the functions gn(x) = max{m(x) ,-n}.

Obviously g, are integrable and we have gn(x) > m(x),

X X
£ (x) = Ign(t)dt - fm(t)dt. Consider the function
a noe a
fn(x)-f(x). We have (fn(x)—f(x))' < fﬁ(x)e £'(x) > fg(x)*m(x).
Since £ (x) = g, (x) 2 m(x) a.e. on A then (fn(x)—f(x))' 20

a.e. on A. Besides, from gn(x) > -n and Corollary 7 it
follows that fé(x) > =-n. Therefore (fn(x)—f(x))' > -n-m(x)

> -». Then from Lemma 7 it follows that fn(b)—f(b) >
b
fn(a)—f(a) = -f(a) so that f(b)-f(a) =< fgn(t)dt. For n » «
b a

we obtain f(b)-f(a) < [m(t)dt. This proves the lemma.
a
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Theorem 24. Let F and M be interval functions, defined

on A = [a,bl, ||M(z)|| < » and M be integrable on A.

b
If F'(x) c M(x) for x € A then F(b) c Fla) + [M(x)dx
a

b
and provided w(F(al)) > w([M(x)dx) then

b T
F(b) o F(a) ® [M(x)dx.
a

Proof. We have f'(x) < m(x) for x € A and from Lemma 4 it

b
follows that f(b) < f(a)+ [m(x)dx. We also have
a

-f'(x) < -m(x) and from Lemma 4 we obtain

b b
-f(b) < -f(a)- [m(x)dx that is f(b) 2 f(a)+[m(x)dx. The
a a

above two inequalities imply the inclusion F(b) <

b
F(a) + [M(x)dx.
a

Consider now the function H(x) = F(-x) on the interval

[-b,-a]. We have H'(x) < -M(-x) and consequently

-a
H(-a) < H(-b) + [ (-M(-x))dx. Therefore
-b

-a b
F(a) € F(b) + [ (-M(-x))dx = F(b) e [M(x)dx. Using
-b a
b
w(F(a)) > w(/M(x)dx) it is easy to see that
a
b

F(b) o F(a) @ [M(x)dx.
a
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sufficient conditions for absolute continuity.

Theorem 25. Let f be a real function, defined on A = [a,b]

and f' be the S-derivative of f. The following two
are equivalent and any of them implies that f is

absolutely continuous:

z) There exists a real function m(x) integrable on A,

such that ||f'(z)| < m(z);

i) 1£'(x)|| < ® for = € A and f' is an integrable on

A interval function.

Proof. We shall first prove that i) implies absolute

continuity of f. Consider the functions mn(x) = min{m(x) ,n}

which are integrable on A. It is easy to see that

b
Jm (x)dx - fm(x)dx for n - «=. We choose ¢ > O. Let n be so
a a
b b
large that [m(x)dx - [m (x) < /2. Let [x,,x,+h 1,
a a

v=1,2,...,k, be unintersecting intervals on A. Denote

I

k
a (x1,x2,...,xn,h1,hz,...,hn) and Ea = Uv=1[xv,xv+hv].

k
From Lemma 4 it follows that } lf(xv+hv)—f(xv)| <
v=1
k Xy+hy
) [ m(x)dx = [m(x)dx ¢ [m (x)dx + /2 <
-— - n -
v=1 Xy Ey Eﬁ
nu(E ) +¢/2. Thus, if w(E) = z h < & = ¢/(2n) then

k

) lf(xv+hv)-f(xv)l < €/2 + ¢/2 = ¢ which implies absolute
v=1

continuity of £.
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We shall now prove the equivalence of i) and ii).
From i) it follows that f is absolutely continuous and
therefore f is differentiable a.e. on A and f' is inte-
grable. From |[f'(x)|| < m(x) it follows that

[l£'(x)}] < = on A. In order to prove that ii) implies i)
it is enough to choose m(x) = ||£'(x)|| which is an

integrable real function on A.

Integration of the S-derivative.

Theorem 26. Let F(x) be an interval function, defined on
A = [a,b) and F'(xz) be its S-derivative. If
|F'(x)|| < » for 2 € A and F'(z) is an integrable on A

interval function, then

b
Z) F(b) < F(a) + [F'(z)dzx and if F is w-increasing
a
b
on A then F(b) = F(a) + [F'(z)dx;
a

b
i) F(b) o F(a) e [F'(x)dzx by the additional assumption
a

b
that w(F(a)) 2 w(fF'(x)dz). Moreover, if F is w-decrea-
a

b
sing then F(b) = F(a) e [F'(x)dx.
a

Proof. From Theorem 24 putting M(x) = F'(x) we obtain the
above two inclusions. Since ||F'(x)|| < » on A and F' is
integrable on A it follows that [[£'(x)]|| < = and ||F'(x)]| < =

and £, T are integrable on A. Using Theorem 25 we see that
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£, F are absolutely continuous and therefore

b b
£(b) = £(a)+[f' (x)ax, E(b) = F(a)+/T' (x)dx. Here we can
a a

assume that f', T' are defined only at the points at
which £, T are differentiable, that is f', f' are

defined a.e. on A.

Let F be w-increasing. Then we have f'(x) < T'(x) and

b
consequently F(b) = [£(b),E(b)] = [£(a)+[£’ (x)dx,
a

b b b
Ea)+fE' (x)ax] = [£(a),E(a) I+[[E£' (x)dx, [f' (x)dx] =
a a a

b
F(a)+[F'(x)dx.
a

Analogically, if F is w-decreasing we have £r{x) > T (x)

b b
and F(b) = [£(b),E(b)] = [£(a)+[£' (x)dx,E(a)+[E" (x)dx] =
a a

b b
[£(a),E(a)lol JE' (x)dx, [£' (x)dx] = F(a) @ [F'(x)dx.
a a a

A property of the S-derivative of an absolutely continuous

function. It is proved in [7] that the S-derivative of a
Lipschitzian function G has a property F(E,G';x) = F(A,G';x)
for an arbitrary setE c A such that u(ANE) = O. This holds
true for the S-derivatives of an absolutely continuous

function, too.

Theorem 27. If G is absolutely continuous on A then for
every set E © A such that w(ANE) = 0 we have

F(E,G';x) = F(A,G';x) for x € A.
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Proof. The inclusion F(E,G';x) © F(A,G';x) is obvious.

We shall verify the inverse inclusion. Denote by E1 the
set of all points of A at which G is differentiable and
let E2 = E.l
€ > 0. Denote E = [-¢,e]. Then F(E2,G';xo)+E o> G'(x)

N E. Obviously u(A\Ez) = 0. Let Xq € A and

whenever |x-x_| < § and x € E,. Let x be such that

2"
|x—xol < § and x € E2. From Lemma 5 we have
* . ] [ )
G'(x) S llmt_’X G'(t). Therefore G'(x) c le_x[<61rP€E2G (p)
t€E2
c vlt-xol<6,t€E2G (t), where 6§, = §-|x-x_|. Hence

F(EZ,G';XO)+E =Y G'(t) o v <6G'(x) and

It-xol<5,t€E2 Ix-xol
consequently F(EZ,G';xO)+E =} F(A,G';xo). Since € is arbitrary

we have F(E,G';xo) =) F(EZ,G';XO) =) F(A,G';xo) which proves

the theorem.
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6. Interval functions of several variables. Directional

s-derivatives and partial S-derivatives.

Directional S-derivatives. Let G be an interval function

defined on a sub-set @ of a normed space L.

Definition. Let % € L, l|2]l = 7 and 2z € Q. The intervals

DI(G;z)l = S—Zimt*O(G(z+tl)—G(z))/t

Dy(Giz)h = S=Limy 4/ 15)1e (G(z+h)-G(z))/ || k]|

are called directional S-derivatives from first and
second kind, respectively, of G at the point z in

the direction 2.

We obviously have D1(G;z) c Dz(G;z)z v (—DZ(G;z)(-l)).
Example. Consider the function

x for y = x7,
G(x,y) = {
0 for y # x".

0 for every & € R? with |je] =1,

Then we have Dl(G;(0,0))l
whereas
{[0,1] for 2= (1,0) and &= (-1,0),

D2(G:(O,0))2 =
0 for # (1,0), # (-1,0), {|2ll=1.

This example shows that the directional derivatives D1
and D2 are different in general. The derivative D2 is more
convenient in certain situations, but generally it is

easier to work with D1. It is easy to see that if
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G is defined in R2 and continuously differentiable
with respect both to x and y then D

1 and D2 coincide.

Theorem 28. Let 21,8, € Q and & :(31—22)/ sz_ 2[L
Then (G(z,)-G(z,))/ ||z;-2,|l = VocagiPq(Gsaz t(1-a)z,)2

voéaél)E:t1€D2(G;azz+(1—a)22)(gl).

Proof. Consider the function H(t) = G(z,+t2) . Obviously
H'(t) = Dy (Gjz,+te) 2. Then (G(z;)-G(z,))/ |lz4-2,]| =

 (llzy-2, ) = 5001/ |1z4-2,ll € v, 4B G lizg-2, 1) =
vo;u;1D1(G;uz1+(1-a)zz)1 < Vo;a;l,5=11D2(G7“z1+(1'“)22)(gl)'

Partial S-derivatives.

In what follows we shall consi-
der the case L =

R”. Assume that G is defined on a neigh-
bourhood 2 of (x,y).

Definition. The intervals Gé(x,y) = S—Zimtqo(G(x+t,y)'

Glx,y))/t and Gé(m,y) = S—Zimtﬂo(G(x,y+t)—0(x,y))/t are

called partial S-derivatives of G with respect to z and

Yy respectively at the point (x,y).

It is immediately seen that G;(x,y) = D1(G;(x,y))£ for

£ =(1,0) and G;(x,y) = D1(G;(X,y))l for ¢ = (0,1).
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Theorem 29. Let & = (a,B) € R, 12]] = 1. Then for i = 1,2

we have
Di(G;(x,y))Z < aF(G;;(x,y)) + BGé(x,y),

where by F(G;;(x,y)) we denote the complete graph of

G! on Q.
x

Proof. Assume first that G(x,y) = g(x,y) is a real

function and let h = (h1,h2) € R2. We have

(g (x+h, 3y+h,) =g (x,¥)) / |{hil = ((gx+hy,y+hy) =g (x,y+hy)) /|hy ).
(Ihy 17 11RID + (g x,y+hy) =g (x,9)) /[0y ) Uy [/ 1R - Let

h - 0 and h/ ||h|] » ¢ = (a,8). Then h1/l|hH - o and

h,/ [|n|| > 8. Using that ((x+h1,y+h2)—(x,y+h2))/lh1| =
(h1,0)/|h1| = (sign h,)(1,0) and Theorem 28 we obtain
(9(X+h1,y+h2)—g(x,y+h2))/lh1l < (sign hy)vg _ 4Dq(gix+ehy,y+hy).

€L

3 )
(1,0) = (sign b))V o o< ihil, Iq-yl< ihy Ix(Pr@) - This

implies S=limy_ o onipy o (906Hhy,y+h))-g(x,y))/ |IR]l <=

S=HM in i 50 Vip-xi< ilhll, Ig-yl< linN Ix (Pra)

Lim |11 =0 h1/||hH + s-limhzao((q(X.y+h2)-g(x.y))/hz'

Lim |1 -0 hy/ |Ihl| e oF(g}ix,y) + sg§(x,y).

Let now G(x,y) = [g(x,y),39(x,y)] be an interval
function. As in Theorem 13 we see that

D, (G; (x,¥))2 = D, (g; (x,y))% v D;(g;(x,y))%, i = 1,2. Then
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D, (G; (x,¥y)) % = (aF(gi;(XIY)+63§(Xry)) v
(aF (gy; (x,¥)) 4890 (x,¥)) < alF(gy; (x,¥)) v F(g}; (x,y))] +

Blgy (x,y) v gu(x,y)] = aF (GL; (x,¥)) + Gy (x,y).

Corollary 8. If Gé(x,y) is a fintte interval and & = (1,0)

then DZ(G;(x,y))E c F(G;;(x,y)).

Corollary 9. If F(Gé;(x,y)) 78 a finite iInterval and

2 = (0,1) then D2(G;(x,y))l < Gé(x,y) = DJ(G;(x,y))l.

Remark 1. The places of x and y in Theorem 29 and its

corollaries can be changed by a symmetry argument.

Remark 2. The situation when i) o« = 0 and F(G;;(x,y))

is an infinite interval or ii) B8 = O and G;(x,y) is an infinite
interval are of particular interest, since then
uF(Gi;(x,y)) = [-=,+=] oOr BG&(x,y) = [-»,+=], The inclu-
sion is obvious but provides little information. Let g = O.

Then S-lim . o (9(x+hy,y+hy)-g(x,y))/ |[n] =

(S—limh2*+ég(x,y+h2)-g(X,y))/hz'hz/||hH) v
(S-Limy, (9 (x,y+hy) =g (x,y/hy-hy/ ||Rl[) v 0 <
limh2*+o(h2/][hH Iys (Xs¥)) v limhzﬁ_o(h2/||hH g,_(x,y)) v O

=0 v limeaog§+(x,y) v (—g&_(x,y)) = A.
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Obviously A takes values 0, [0,+=], [-«,0],

[-=,+=], while O-gi(x,y) can be 0 and [-=»,=].

Thus we have DZ(G;(x,y))(1,O) < F(G;;(x,y))+A,

where A = lim
£

° (eG;ﬁ_(X,Y) v (—G)',_(x,y))) v O.
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7. Applications to Cauchy problem for first order

differential equations.

Let f be a real function, defined on some neighbour-
hood D < R2 of (xo,yo). In this section we consider the
problem:

y' = £(x,y),
(1)

yix)) =y, .

Using the extended segment analysis, developed in
the previous section, we can formulate conditions for
existence and uniqueness of solutions of (1), which
in certain situations are more convenient than the

familiar ones.

Uniqueness of the solution.

T TT—— —_
Theorem 30. If Dl(f;(xo,yo)l v Dz(f;(xo,yo)) 3 0 where

W R
Dl(f;(xo,yo))l = S~lim Dl(f;(x,y))l and

(x,y)=(x ,y,)
L = (J,f(zo,yo))/ll(l,f(xo,yo))H, then there exists

8 > 0 such that problem (1) has at most one solution

in [xo,xo+6].

Proof. Assume the opposite. Let y1(x) and yz(x) be two

solutions of (1) which differ in every interval [xo,xo+6].
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Without loss of generality we can suppose that

y1(x) < y2(x). Indeed, in an opposite situation we shall
consider min{y1(x),y2(x)} and max(y1(x),y2(x)}. For
simplicity assume that Xy = ¥y = 0. We shall consider

three cases:

1) There exists € > O such that f(x,yi(x)) > £(0,0)
for i = 1,2 and x € (0,e]. Let n be an arbitrary natural

number such that 1/n < e¢. We consider the curves:
Cqt Yy = y1(x), €y ¥ = y2(x)

in the interval [0,1/n]. We perform the substitution

X = 248 = I,n
{ (2)
y = 2,25 + £1n
where (11,z2) = 2. Then the equations for Cqr Cy become:
C,]: 01(&1”) = 22€+£1n'y1(11€'12ﬂ) = 0,
(3)
Cy: 0,(84m) = 22£+21n-yz(£1€-22n) = 0.

Since we have @ig(é’n) = lz—yi(£1£—£2n)-l1 =
21(12/21-yi(11€-22nn = 21(f(0,0)—yi(215—22n” < O provided

115-22n € (0,1/n), the theorem for existence of implicit
functions implies that we can define in a unique way the

differentiable functions 51(n) and Ez(n) such that
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B.(Ei(n),n) =0, 1i=1,2

i J

whenever n is such that £1£i(n)—22n € {0,1/n]. It is
not difficult to be shown that there exists Ny > O such
that 11£i(n)-£2n € [0,1/n] for every n € [O,no] and that

51(0) =0 for i = 1,2.

Thus we obtain the functions 51(n) and gz(n) defi-
ned on [0,no] which satisfy (4). We shall prove that

51(n) > gz(n) for n € [O,nol. Let n € [O,no]. We de-

termine
Xy = L8 (n)=2,n , %, = L,E5(n)=2,n
We have y1(x1) = 12g1(n)+11n and y2(x2) = lziz(n)+l1n-
Then
E1(n) = 4ax 4oy (x9), E5(n) = 24X 4.y, (%),
n = -12x1+£1y1(x1) = —12x2+11y2(x2).

We have y,(x,)-y,(x,) = (22/11)(x1-x2) = £(0,0) (x1-%,)
and O = yz(xz)—y1(x1)—f(0,0)(x2—x1) > yz(xz)—yz(x1)—

f(O,O)(xz—x1). Assume that x, < x Then

1 2°
(y2(x2)-y2(x1))/(x2—x1) < £(0,0) and therefore there
exists s € (x1,x2) such that yé(s) < £(0,0) but
yé(S) = f(S,yz(S)) > £(0,0). This contradiction shows
that x, > x, which implies £,(n)=£,(n)

_ 2.2
11(x1-x2)+22(y1(x1)-y2(x2)) = (x1—x2)(£1+£2)/21 > 0.
Therefore 51(n) > €2(n) for n € [O,nO].

(4)

(5)
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By differentiation of (4) we obtain

gi(n) = (1+yi(xi)f(o,o))/(yi(xi)-f(o,o)), i=1,2.
Assume that Ei(n) < Eé(n) for n € (O,no). Then

(51(n)—€2(n))' < 0 and therefore 51(n)-£2(n) 2;51(0)'52(0)==0,
but 51(n) > Ez(n) which implies 51(n) = Ez(n). But this
immediately implies y1(x) = yz(x) in some interval [O,38]
which contradicts to the assumption made in the beginning.
This contradiction shows that there exists n € (0,ny)
such that £} (n) > &3 (n). Moreover £,(n) # £,(n) . Indeed,

if 51(3) = £2(F) it is easy to see that Ei(ﬁ) = Eé(ﬁ).

Let x, = 2164 (n)=2,n, x5 = 2485 (n)=Lyn. Then we have

1+y} (x4) £(0,0) _ _ T+y; (x,) £(0,0)
e E{(n) > Eé(n) = —
y] (x)-£(0,0) y5(x,)-£(0,0)

v} (%) =€ (0,0) 41 (x1) 3 (x,) £(0,0) -y} (x) £2(0,0) >
Y4 (%) =£(0,0) 4y} (1) v (%,) £ (0,0) -y} (x,) £2(0,0) 5
(v', (x,) =y" 1 (1) (14£2(0,0)) > 0;
which implies yé(xz) > yi(x1) and therefore f(x1,y1(x1)) <
E(x,,¥,(x5)) .
Besides, we have

Yq (%) =y, (x,) Lo (£, (M) =E5 (M) L
L SR L R 2 =—2:f(o,0),

Xy =X, (e (Mg, (M) 2y
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and because of Xy > Xy, we have (x1-x2,y1(x1)—y2(x2))==k1:

where k = |lx1—x2,y1(x1)—y2(x2)|]. From Theorem 28

we have

F(X.,y4 (%)) -F(x,,7,(x,))
o > 17Y1 % 21¥2'%)

cv Dy(f; (ax. . +(1-a)x,,
| (xq=%5, ¥4 (x9) =y, (x,)) | ozast™1 ! 2

uy1(x1)+(1-a)y2(x2))).

Then there exist Pnr 9, and r, such that

0 >r, €D,(filp,,q)))s Py = axy+(1-a)x,,
q, = uy1(x1)+(1-a)y2(x2). Thus O < p, < 1/n, O < q, 2 1/n

and therefore p, = O and q, - O for n -» ©, Then

T T———
D1(f;(0,0))z = s_llm(x,y)»(O,O)D1(f;(x’y))l =) S-llmn_mrn

[

0.
On the other hand, (y1(x)-0)/(x—0) - f(O,O)=:£2/R1jﬂplies
X-0

. f(h1,h2)-f(0,0)
D,(£;(0,0)) = S-llmh=(h1,h2)»o,h/ith*l lIn||

f(x,y1(X))-f(0/0)
%0 20-
ller1(x)H

S-lim

T T ———
Thus we have D1(f;(0,0))2 v D2(f;(0,0))2 3 0. This
contradicts to the assumption in the theorem and there-

fore the theorem follows in this case.

2) There exists € > O such that f(x,yi(x)) < £(0,0),

i=1,2, for x € (0,¢) This case is considered analogously

to case 1).
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3) For every € > O there exist Xy Xy € (0,e) and
i,j € {1,2} such that f(x1,yi(x1)) < £(0,0) = f(xz,yj(xz)).

Let ¢ = 1/n and let the above inequalities hold true

(n) _(n)
3

1¥q 'in'jn' Since x}n)

for x - 0, xén)* o,

n)

(n) (n) (n) _ (n) _4y,,
(y; (x4 )=0)/(x,""-0) = £(0,0), (yjn(x2 0)/{x,""-0) £(0,0)

n

for n » =« then

£ yy (x{M))-£(0,0)

o

o,

D, (£;(0,0))¢ > S-lim__

[

HX1 'yin(x1

(n) (n)
f(x, ,yjn(x2 ))-£(0,0)

a0

o,

D,(£;(0,0))¢ > S-lim

v

x5 vy ™ 0l

which implies Dz(f;(0,0))l 3 0.
The contradiction obtained proves the theorem.

Theorem 30 is rather inconvenient for application in
this formulation. By means of Theorem 29 we can formulate it

in the following weaker but more convenient form.

Theorem 31. If F(f;;(xo,yo))+f(mo,yo)F(fé;(xo,yo)) 3 o,

then problem (1) has at most one solution in some
interval [xo,x0+6]. Besides, 1f f(xo,yo) =0, it is
sufficient for the uniqueness of the solution that

F(fls(z,,y,))+A 3 0, where A = Ov Zim€*+oefé+(xo,yo) v

(~fy (2,00,
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Proof. From Theorem 29 we have Dz(f;(xo,yo))l c
LiF(f5s (xo,yo))+12f§'((xo,yo) and D, (f;(x,y))l <

. T
11F(f;;(x,y))+12f§(x,y) which implies D1(f;(xo,yo)2 c
Z1F(f;(;(xolyo))+22F(f§',;(xo,yo)) and consequently
/\__/
Dy(f:ix sy )) 2 v Dy(fi(x v )Y & B (FE 5 {x,y ) )+
f(xo.yo)F(f§;(xo,yo)). Since &, > O using that

F(£05 (x,,y,) ) +E(x )F(f&;(xo,yo)) 3 0 we obtain

o'¥Yo
T T — _
D1(f;(xo,yo))£ v Dz(f;(xo,yo))z 3 0 and the uniqueness

follows from Theorem 30.

Let f(xo,yo) = 0. Then & = (1,0), D1(f;(x,y)) = f;(x,y)
and according to Remark 2 we have Dz(f;(xo,yo)l c
——
F(f*;(xo,yo))+A. Since A 2 O we have D1(f;(xo,yo))2 c
/_\___/
v, i i 3 . .
F(fx,(xo,yo))+A which implies D1(f,(xo,yo))£ v Dz(f,(xo,yo))z

c F(fi;(xo,yo))+A and the uniqueness follows from

Theorem 30.

Remark 3. We see that the function f(x,y) and its deri-
vatives can be considered only in some sub-set of Q@ which

contains all solutions. For instance, if M < f(x,y) N

in

it is sufficient to consider f in the set {(x,y): x

v

X
o’

yo+M(x-xO) <y < N(x—xo)] n Q.
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Example. Consider the problem y' = fix,y) = Ylyl+x+1,
y{(0) = 0. Since f(x,y) > O for x > O, f can be
considered only in the set {(x,y): x >0, v 2 0}. Then

£(x,y) = /y+x+1, £(0,0) =1, £,(0,0) = £/,,(0,0) = *=

f;(x,y) = 1/24) f;(x,y) 1, so that F(f;;(0,0)) =1,

F(f;;(o,o)) +«. Thus we have F(f;;(o,o))+f(0,0).

I

F(f§;(0,0)) +o 3 0, which implies the uniqueness of
the solution. It is easy to see that f(x,y)} is not

Lipschitzian with respect to y.

Example. Consider the problem y' = £(x,y) = /lyl+x, y(0) = O.
We have f£(0,0) = O, f§+(0,0) = +o, f&_(0,0) = -w, SO
that A = O v lime_’oe(f)'H(O,O) v —f)'(_(o,o)) = [0,+=]. We

thus obtain F(£f;;(0,0))+A = 14[0,+=] = [1,+=»] 3 O, which

shows that the problem has at most one solution.

Existence of solution of a differential inclusion. Let G(x,y)

be an interval function defined on @ = {x_ < X

0 < b

&

1
ly-yo| < c}. The problem

y'(x) € G(x,y(x)), y(x,) =Y (6)

o!

is called a differential inclusion with initial condition.
The right-hand side may be an arbitrary multivalued
function, but we shall restrict ourself to the situation
when it is an interval function. The derivative will be

considered in the sense of S-derivative.
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Theorem 32. If G is S-continuous and bounded on Q
interval function, then the problem (6) has a

solution in some interval [xo,b].

Proof. Let |[|G(x,y)|| < M and b = min{b,,x_+c/M}. We
denote A = [xo,b]. Let n be a natural number. We di-
vide A into sub-intervals by means of the points

Xy < Xp<.e.. <x = b, X=Xy _q = w(A)/n and we form the

function yn(x) = {yo,x=xo;yn(xk)+hk(x-xk), Ky < X < Xpoq

k =0,1,...,n-1 where the number hk is arbritrary

chosen from the interval F(x,,y (x,)). Since IIYA(X)H <

IveeaGx,y(x)) |l < M and |y (x)]| < y +Mw(a) we obtain

that the functions {yn(x)}:=1 are uniformly bounded and
equicontinuous. Using the theorem of Arzela-Ascoli we
can choose an uniformly convergent sub~sequence. Without
loss of generality we may assume that yn(x) -» y(x) for

n -» o, From the uniform convergency it follows that y(x)
is continuous on A. We note that A is chosen so that

(X,yn(x)) € 0 and (x,y(x)) € o for x € A.

Let us fix 6§ > O. The function F(G,$;(x,y)) =
[I(G,8;(x%,y)),5(G,8;(x,y))] is S-continuous on @ and
from Lemma 3 it follows that h(Hn,H) - O for n - o,
where Hn(x) = F(G,é;(x,yn(x))), H(x) =F(G,8; (x,y(x))).

Let n > w(A)/6 that is X=Xy 4 = w(A)/n < &§. Then we

have y/ (x) < F(G,68; (x,y (x))) = H_(x). From Lemma 2 it
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follows that h(y;,H) -+ 0. Since y(x) is continuous

we have that H{x) = F(G,6;(x,y(x)) is S-continuous on A
and thus we can apply the theorem for differentiation
of sequences of functions (Theorem 22) . We obtain

v'(x) € H(x) = F(G,$;(x,y(x))). Noticing that G is

S-continuous, then for § » O we obtain y'(x) < G(x,y(x)).

Problem (6) can be formulated for interval functions,
too, that is we may search an interval function Y (x)

such that

Y'(x) e G(x,Y(x)), Y(xo) = Yo’

assuming that Y0 € I(R) and that G is defined on
Q « RxI(R). It is not difficult to see that this problem

has a solution, too, if G is S-continuous and bounded.

Existence of solutions of Cauchy problem for first order

differential equations. Let f(x,y) be defined and bounded

in some region @ €« RxR, Q = (xo <X < b1, [y-yol < cl.

We look for a solution of the problem

y' o= Exey), v(x)) = v,

Consider the differential inclusion

y'(x) ¢ F(x,y(x)), y(xo) = Yo

where F(x,y) = F(f;(x,y)).

(7)

(8)
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Theorem 33. If for some solution y(x) of the differential
inclusion (8) defined on A 3 z, the equality

Jw(F(z,y(x)))dx= 0 holds true then y(z) is a gene-—
A

ralized solution of problem (7) in the sense that:

y(zo) =y, and y'(x) = flz,y(x)) a.e. on A.

Proof. From [w(F(x,y(x)))dx = O it follows that
A

F(x,y(x)) € R for almost all x € A which implies that

y'(x) € R a.e. on A that is y is differentiable a.e. on A.
Since f(x,y(x)) < F(x,y(x)) we have f(x,y(x)) = F(x,y(x))
a.e. on A so that y'(x) € f(x,y(x)) a.e. on A and

consequently y'(x) = f(x,y(x)) a.e. on A.

It is more convenient to formulate and use the above

theorem in the following form:

Theorem 34. Let f(x,y) be defined on @ and |fl(x,y)| < k
for (z,y) € Q. Then the problem (7) has a generalized
solution 1f at least one of the following conditions

hold true:

i) For every function ¢ which is Lipschitzian with
a constant k and such that w{xo) = Y, the equality

Jw(F(x,9(x)))dx = 0 holds true for a suitably chosen
A

interval A 3 T,
21) For every continuous function @ such that w(xo) =Y,

and ¢'(z) ¢ F(f;(x,@o(x))) for x= € A, B, 3 & the
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equality [w(F(x,®(x)))dz = 0 holds true for a suitably
A

chosen interval A < Al’ A3 T, -
Theorem 34 gives us a criterion for the existence of
a solution of (7). It immediately implies that if f(x,y)
is continuous then (7) has a solution. Indeed, if £ is
continuous then F(f;(x,y) = f(x,y) and fw(f(x,0(x)))dx =
for every function ¢ and for every inteﬁval A. However,
this theorem can be applied in more general situations

as well.

Example. Let f(x,y) = {p,1/(2K) <y < 1/(2R+1);
q, 1/(2K+1) <y < 1/(2K); K = 1, #2,...}, p >0, 9 > O,

p,q € R, Xy = Yo = 0; and let ¢ be such that

(o)

@' (x) < F(x,0(x)) = F(£f;(x,9(x))) on some interval A 3 x,

and @(0) = 0. Since p > 0o, q > O then ¢'(x) > O and ¢
is strictly increasing. Then each of the sets

Ag = (x €A: ©(x) = 1/K}, K = #1, +2,... consists of at
most one element. Denote A = {x € A: w(F(x,0(x))) > O}.

We have A c UiztiAK' The set A is countable and therefore
u(A) = 0. Then |[w(F(x,9(x)))dx| = [w(F(x,@(x)))dx <
A A
u(A)max{p,q} = O and consequently fw(F(x,p(x)))dx = O so
A

that Theorem 34 implies that there exists a solution of

the problem (7). The function f is not continuous with

respect to y in this example and therefore Caratheodory's

theorem is not applicable.
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Cauchy problem for first order interval differential

equations. The Cauchy problem for first order differential
equations can be formulated for interval functions as
well. Let G(x,Y) be an interval function defined on

Q c RxI(R), 23 (xO,YO). We shall look for an interval
function Y(x) defined on some interval A 3 X5 such that

(x,Y(x)) € @ for x € A and

Y (x)

G(x,Y(x)) (9)

Y _. (10)

Y(xo) o

We shall be interested in generalized solutions of
this problem in the sence that (9) should be satisfied a.e.
on A. We also note that in (9) the derivative may be

considered as S-derivative.

Definition. A solution Y(x) is called w-maximum on A if
for any other solution Z(x) of (8), (10) the inclu-

ston Y(x) > Z(x) holds true on A.

Definition. Let H be an interval function, defined on
some sub-set of I(R). We say that H is inclusion

i8otone 1f Yl c Y, implies H(YJ) c H(YZ)'

Theorem 35. Let G(x,Y) be defined on Q = {xo LX< bl’
l¥-¥ || <e and let it be bounded, S-continuous and
inclusion isotone with respect to Y on Q. Then

problem (9), (10) has a unique w-maximum solution
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in the interval A = [xo,b] where b = min{bl,z0+c/m}

and m is such that ||G(z,¥)il =m for (x,¥) € Q.

The proof of this theorem is given elsewhere

(Mathematics and Education in Mathematics, 1oth Spring
Conference of the Bulg. Math. Soc., 1981, p. 96) and

will be omitted.
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